
This white paper is about machine learning problems that consider gender, race or similar 

variables as predictors in a model. For example, race may be an important predictor for income 

level, at least in the USA. This paper doesn’t deal with the definition of race categories or how to 

‘measure’ race (or gender). The latter questions are contentious topics in social science and 

there is no scientific consensus answer. This paper considers what you would do with categorical 

data, such as gender or race, and in particular how do you measure “diversity.” Different fields 

(e.g. physics or evolutionary biology) propose multiple “right” answers to choose from. But a 

too-simple measure, such as variance, is not a theoretically sound diversity measure. 

Information entropy as a measure of diversity 

G. R. Harp, 01-Mar-2020 

Statement of the problem and definition of entropy 
In one project, we were trying to come up with a practical definition of racial diversity and 

gender diversity in a human population. One possibility is to simply count the number of 

different races that appear in the group. But a group that is 99% one category and 1% of a 

different category is not as diverse as a simple count would show. We also discussed using A) 

the variance or B) the ‘information entropy’ as a measure of diversity. Here we make a 

comparison of the latter two choices. 

One suggestion is to use the variance as a measure of diversity. This may be sufficient for some 

simple comparisons, but variance has a couple of drawbacks.  Variance is an extrinsic variable, 

meaning it has units. This makes it difficult to compare the variance (diversity) of two different 

measures. Suppose you have one column which is race (categories = 1, 2, 3, and 4), and a 

second column which is gender (categories = 1, 2). If you compute the variances of these two 

columns, then it isn’t clear how can you compare the diversity of race with the diversity of 

gender? 

Another proposal is to use information entropy (Shannon entropy) as the diversity measure.  

The information entropy, often just entropy, is a basic quantity in information theory 

associated to any random variable, which can be interpreted as the average level of 

"information", "surprise", or "uncertainty" inherent in the variable's possible outcomes. 

The quote is from Wikipedia’s definition of information entropy, and gives you some idea of 

what entropy means. An example helps: Suppose you have a classroom with 29 children of 

various races and then add another child from the same community. How can you predict the 

race of the 30th child before they arrive? How likely is it that you will guess wrongly, assuming 

the theoretically best guess? If your guess is wrong, then you are ‘surprised’ by the result. 

That’s entropy. 

https://en.wikipedia.org/wiki/Entropy_(information_theory)


Please go to the Wikipedia page for a description of the formula (  lni ip p ,   where 
ip is 

the probability of category i ) and some explanation.  If you haven’t thought of it before, 

entropy can be a difficult concept to get your head around, so I refer you to the explanations on 

Wikipedia to get started. 

An illuminating example 
Instead, let’s consider an example. You have two cohorts of 100 people and some extrinsic 

categorical variable X , whatever that may be. For convenience, we assume that X values may 

fall into one of 100 categories, labeled ,  where 0 100i i  .  

In the first cohort, ninety-nine people have 1X   and only one person has 100X  . Intuitively 

we think this sample has very low diversity (whatever that means). A simple calculation shows 

that X has a variance of 97 units. 

In the second cohort, the X  follows a normal distribution with values from 1-100, like before. 

Intuitively, this is a highly diverse sample. However, by coincidence this cohort has a variance 

var( ) 97X  . (In case you think this is impossible, I have prepared two samples with exactly 

these distributions, shown below.)  

As an intuitive measure of diversity the variance is disappointing, since it doesn’t distinguish 

between these two very different groups. What about the entropy? In Figure 1 there is a screen 

shot of a Jupyter notebook that calculates entropy using the scipy.stats.entropy() 

function in python. (A similar function exists in all mainstream statistics packages, including R.) 



 

Figure 1: A Jupyter notebook that compares the variance and information entropy of two different cohorts, 
designed to have an intuitive feeling of either high or low diversity 

Skipping to the last cell in Figure 1, we compare the variances and normalized entropies for 

each of the cohorts.  I’m inventing a new name for entropy in this case, ‘diversity quotient.’ The 

diversity quotient is a dimensionless measure that varies over the range 0-1. Comparing the 

variances and diversity quotients of the two cohorts, we see that the variances are almost equal 

while the diversity quotient better captures our intuitive sense of what diversity means. 

Normalization 
The only detail I haven’t explained is how we normalize entropy to a 0-1 scale. This is done by 

considering the entropy of the sample with maximum diversity. For a cohort with sample size 

100N  , this implies there is one person in each category. The entropy here is easy to 

calculate, since every category i has the same probability 1/100 1/ip N  . There are 

catN different categories, so 
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In cases where there are more categories than cases,
catN N , you use the smaller of the two 

numbers (sample size). In cases where 
catN N (typical case), and maximum entropy is 

achieved when there are an equal number of samples in each category. This is true, even if 
catN  

is not an integer multiple of N , since the sample size drops does not appear in Eq. (1).  



Knowing the maximum entropy, we form the normalized entropy (aka diversity quotient) as the 

sample entropy divided by the theoretical maximum entropy. 

Summary 
Here we present a short analysis that motivates using the information entropy as our diversity 

measure. Many other diversity measures are found in the literature. For example, a super-

simple measure is simply to take the probability value of the dominant class. This is a measure 

that varies from 0-1, and is also monotonic with our intuition of diversity. 

The best reasons to choose the entropy is because it has a well-defined meaning in information 

theory as “the maximum information content expressible by the sample.” Entropy is commonly 

used in genetics, where researchers want to compute the information carrying capacity of a 

single gene or piece of DNA. This answers the interesting question of, how much information is 

required to fully specify a single human being? 

By dividing our sample entropy by the maximum entropy we have a metric, which we call 

‘diversity quotient’, which is an intuitive measure of the fractional information content 

embedded in our sample, compared to the maximum information there could possibly be. 

 

 

Update: 05-Apr-2020 
One of our readers pointed out that in evolutionary biology, a more common measure of 

species diversity is the Simpson Index. If 
in  is the number of species in category i , and the total 

number of animals spotted is N , then the Simpson index is computed as 
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The Simpson index has the same desirable properties as entropy (varies 0-1, intuitively 

consistent). After some discussion, we have a few more remarks. 

The Simpson and Shannon indexes will always be monotonically related. That is, any ordering of 

diversity using one index will agree with ordering by the other index. This is seen if we compare 

the asymptotic limits of the functional form of the two indices: 

  2Shannon ~ ln       Simpson ~ i i i

i i

p p p   



So from one perspective, either index gives the same information, and what changes between 

them is the interpretation of index values.  The Simpson index is generally lower than Shannon, 

as observed in this plot.  

 

This figure examines a (0 or 1) variable where the probability of “1” varies over a large range.  

Notice the log-log scaling, where a straight line indicates a power law dependence.  It is notable 

that the Simpson index value is close to the probability value over most of the range.  Thus, 

Simpson is intuitively even more easy to understand than Shannon entropy.  

Note: We’re plotting the Shannon as defined in my previous post, which is normalized to the 

number of categories, not the number of samples. This normalization was added by me, and is 

a bit non-standard. 

Another thing to compare are the index values when the probability tends to ½, or the point of 

maximum diversity. The Shannon index goes to 1, which indicates this is the most diversity you 

can have with two categories.  The Simpson index does not go to 1. Instead, the Simpson 

measure is compared to the case where the number of categories is the same as the number of 

samples, and each category has the same number of samples in it.  I prefer the Shannon 

normalization, but both of these are reasonably justified if you keep in mind what it is you’re 

comparing to. 

This difference in normalization does have a significant impact when comparing two variables 

with different numbers of occupied categories.  Suppose you have 999,999 samples equally 

distributed between zeros and ones, and a single sample with a different value, say, 10. 

Because Shannon is sensitive to the number of occupied categories, this single sample has a 

large impact. The addition of a third category decreases the entropy from a value of 1 to 

approximately [log(2)/log(3)]. This suggests that the population could be a lot more diverse 



than it is. On the other hand, the Simpson index changes by only a tiny amount, about 10-6. This 

suggests the diversity hardly changes. 

Which of these behaviors is more consistent with intuition? I don’t know. If you have three 

species but only two of them appear frequently, then the diversity is lower than it could be 

(Shannon).  On the other hand, you could argue that the diversity of a large population changes 

hardly at all if only one animal belongs to a third species.  I think both answers are justifiable. 

Having said all that, I am now leaning toward using the Simpson index for our models. The 

Simpson has no physical interpretation, unlike the information entropy. On the other hand, 

Simpson gives values that are more intuitive to understand. Unless you really care about 

information content, Simpson is a slightly preferred measure of diversity. 

 

 


